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Abstract Simple formulae for the components of the added-mass coefficient tensor of a sphere moving near a
wall with variable velocity in an ideal fluid bounded by a solid surface are derived. The added mass is calculated
numerically as a function of the dimensionless distance between the sphere and the wall for both perpendicular and
parallel motions. The calculation is performed by the method of successive images. The velocity field is computed
as the sum of the velocity fields of sequences of dipoles located along the axis. The obtained dependences of the
added-mass tensor components are fitted by simple continuous functions with high accuracy.
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1 Introduction

When a sphere moves in an unbounded ideal incompressible fluid, the only effect it experiences is that it acquires
additional mass equal to half of the water mass displaced by the sphere. In this case the added-mass coefficient
Cm equals 0.5. The presence of a solid wall leads to an increase of the mass with a decrease of the distance to the
wall. As a consequence of the added-mass dependence on the distance of the sphere to the wall, a force arises that
is proportional to the square of the sphere velocity [1]. The direction of the sphere motion also affects the added
mass. Thus, the added mass of a sphere in the vicinity of a solid plane is no longer a scalar quantity, but a tensor,
which will be introduced below.

Knowledge of the added mass of a spherical particle is important for many engineering disciplines, for instance
in river engineering, water treatment and gas-particle or liquid-particle flow in the presence of a solid surface. For
the saltation mode of bed-load transport a knowledge of the added mass is important because, during saltation, the
moving particles periodically collide with the bed (see [2]). It is also indispensable for a dynamical analysis of the
motion of a sphere near a wall or for the numerical modelling of the motion of a sphere (see [3]).

The problem of the motion of a sphere in an ideal incompressible fluid in the vicinity of a wall can be seen as a
special case of the more general problem of the motion of two spheres, provided that the velocity field in the first
case is the same as that generated by the symmetric motion of two equal spheres with the wall being replaced by
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the plane of symmetry. The problem can be split into two problems, namely, (i) the spheres moving perpendicularly
and (ii) moving parallel to the line joining their centres [1].

The problem of the motion of two spheres in an ideal incompressible fluid has been addressed by many authors;
see e.g. [4–14].

For distances to the wall much larger than the radius of the sphere, Stokes [4] derived approximate expressions
for the fluid potential and calculated the increase of the sphere mass as a function of the distance from the centre
of the sphere to the wall for the cases of parallel and perpendicular motions. He considered the motion induced by
the sphere in the absence of the wall, the motion induced by the second sphere that is the mirror reflection of the
first sphere in the plane of the wall, and the motion induced by the first sphere that compensates the motion of the
sphere reflection. Then the three motions were superposed to obtain the result.

Hicks [5] described the image method in detail. This method permits construction of the velocity field from a
sequence of dipoles. This method becomes very complicated when the spheres move perpendicularly to the line
connecting their centres; however, with the development of computer engineering, it became possible to resolve the
problem with sufficient accuracy. For the axisymmetric case, he calculated the fluid kinetic energy in the form of
an infinite series; for a sphere contacting a wall, he calculated an added-mass coefficient equal to 0.803085. In the
case when the spheres move perpendicularly to the line connecting their centres, Hicks abandoned the attempt to
obtain a complete solution, and resorted to an approximate one.

Basset [6] calculated an approximate expression for the fluid potential and for the kinetic energy of a fluid for
spheres moving parallel to the line connecting their centres, as well as for the case of perpendicular motion. The
obtained expressions are valid only for large distances between the spheres.

Kawaguti [7] investigated the special case of the motion of two spheres passing each other to estimate the pressure
variation when two high-speed trains pass each other. The problem was approximately solved numerically using
the image method.

Shebalov [8] considered the motion of an arbitrary body under a solid wall. The velocity potential was calculated
using the Kochin method (see [9]). For the added mass of a sphere moving parallel to a wall, he gave an expression
coinciding with Stokes’ result.

Voinov [10] derived expressions for the flow potential and the kinetic energy of a fluid in the form of an infinite
sum in the case when spheres move perpendicularly to line joining their centres. An integral operator in the sum
terms is applied repeatedly to a dipole potential. The integral operator reflects the image method described in [5].
Voinov also calculated the kinetic energy of a fluid for the case when equal spheres move in contact with equal
velocities. In this case, the added-mass coefficient equals 0.621.

Weihs and Small [11] found an exact solution for the motion of two spheres in axisymmetric potential flow. They
solved the Laplace equation in bispherical coordinates by means of separation of variables. The general solution
in series form was then employed to calculate the added mass of a sphere approaching a wall. They plotted the
result for the added mass and compared it graphically with the classical result obtained by the image method. The
image-method solution approached that of Weihs and Small when the image number was increased.

Miloh [12] found an exact solution for the arbitrary motion of two spheres in an ideal incompressible fluid.
The problem was formulated in terms of spherical harmonics. The fluid velocity potentials for the parallel and
perpendicular motion were found as infinite sums. The derived kinetic-energy expression involved only the first
terms of the sums considered. The coefficients in the sums were defined as the solution of an infinite set of linear
equations. As a particular case, the motion of a sphere parallel to and perpendicular to a plane wall was considered.
The plots of added masses found numerically depending on the distance to the wall were presented. The added
masses at contact were reported to coincide with the previous results.

Bentwich and Miloh [13] obtained an exact solution of the motion of two spheres in axisymmetric potential
flow. Their solution differs from the previous work in that the stream function is used rather than the potential
function. Bispherical coordinates were used in the calculations. The solution was given in the form of an infinite
series. A general expression was obtained for the kinetic energy of the system. They also calculated the added-
mass coefficient for a sphere approaching a wall at an instance of contact, which coincides with the previous
results.
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Yang [14] studied the collision of two solid particles and the collision of a particle with a wall. For the axisym-
metric case of sphere-wall collision, he estimated the added mass of the sphere using the successive-image method.
He suggested cutting off the sequence of images after the seventh term. However, the formula proposed for the
added mass is quite accurate only far away from the wall and yields an error of about 1.3% at contact.

The motion of two spheres in mutual contact was studied by Majumder [15], Small and Weihs [16], Morrison
[17], Davis [18], Jeffrey and Chen [19], and Cox and Cooker [20]. Majumder [15] seems to be the first to examine
the problem of two touching spheres in an incompressible ideal fluid. He found the stream flow function in integral
form for the axisymmetric case using tangent-sphere coordinates.

Small and Weihs [16] presented an exact solution for the axisymmetric incompressible potential flow over two
touching spheres. The Laplace equation was solved in tangent-sphere coordinates. They obtained a solution in the
form of an infinite series for the flow potential. The added-mass expression for a sphere touching the wall was also
derived. However, in contradiction to their previous results (see [11]), they concluded that the added mass in contact
is infinite. Later, Morrison [17] and Jeffrey and Chen [19] pointed out that this suggestion was erroneous. Morrison
[17], correcting the results of Small and Weihs [16], derived the expression for the flow potential, replacing the
infinite series in the solution by an integral. Using the same method, Jeffrey and Chen [19] calculated the flow
potential and the added mass, which was finite and coincided exactly with the previous results.

Using tangent-sphere coordinates, Davis [18] solved the problem of two equal spheres in contact moving per-
pendicularly to a line connecting their centres. The flow potential satisfying the Laplace equation was expressed
as an integral over an unknown function. An ordinary differential equation satisfied by this function was solved
numerically and the kinetic energy of the fluid was evaluated. Davies reported an added-mass coefficient of 0.621,
which coincides with the result of Voinov [10]. Based on the method of Davis [18], Cox and Cooker [20] found
the velocity potential of an ideal incompressible fluid past a sphere moving in contact with a wall. The unknown
function was found numerically to a high degree of accuracy and then a detailed presentation was given of the
potential near the sphere. The added-mass coefficient was found to be equal to 0.621, confirming previous results.

Many papers have been written on the added masses of a sphere in the vicinity of a wall. Most of the solutions are
in the form of infinite series or integrals. The presented expressions are too complicated to be used in fluid-mechan-
ics problems and additional calculations are required before their introduction becomes possible. Only Yang [14],
for the axisymmetric case, presented a simple formula for added-mass coefficient C⊥

m versus distance to the wall h,
although the accuracy close to the contact point is reduced and, on the other hand, when the accuracy is increased,
the formula becomes too cumbersome. To the best of the authors’ knowledge, there is still no useful expression for
the added-mass coefficient of a sphere moving parallel to a wall C‖

m at any distance from the wall. The task seems
to be intractable analytically, but readily solvable numerically. The present paper yields formulae for C⊥

m and C‖
m

that are not bulky and are valid with high accuracy for all distances from the wall.
The mathematical model, based on the image method, for the construction of the velocity potential and calcula-

tion of the added-mass coefficients in both parallel and perpendicular cases is described in Sect. 2. The results of
a numerical calculation are described in Sect. 3. The calculated added-mass coefficients are reported as functions
of the dimensionless distance between the centre of the moving sphere and the wall, and the achieved accuracy is
estimated.

2 Mathematical model

Usually, the dimensionless added-mass coefficient Cm is introduced as ([2,21]):

�Fm = −Cm�ρf
d�u
dt

, (1)

where �Fm is the added-mass force, � is the sphere volume, ρf is the fluid density and �u is the sphere velocity.
In an unbounded fluid, Cm = 0.5.
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Fig. 1 Motion of a sphere
parallel and perpendicular
to the wall
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In potential-flow theory, the added-mass coefficient is calculated from the kinetic energy of the fluid. In an
unbounded fluid, the kinetic energy is expressed as (see [1])

2T = 2

3
πρf a3u2 = M ′u2, (2)

where a is the sphere radius and M ′ is the virtual increment of the sphere mass. In terms of the dimensionless
added-mass coefficient, one has

2T = Cm�ρf u2. (3)

In the presence of the wall, the motion of the sphere can be considered to be the sum of two motions, perpendicular
to the wall and parallel to the wall. The kinetic energy of a fluid for arbitrary motion of the sphere is equal to the
fluid energies for these sphere motions:

2T = M ′‖u2‖ + M ′⊥u2⊥, (4)

or, defining the x-axis perpendicular to the wall, for the most common motion, we can write

2T = M ′⊥u2
x + M ′‖u2

y + M ′‖u2
z = (C⊥

m u2
x + C‖

mu2
y + C‖

mu2
z )�ρf . (5)

Writing the last expression in tensor form yields

2T

�ρf
= Ci j

m ui u j , (6)

where the summation is implied over i, j , and the added-mass-coefficient tensor Ci j
m is introduced. In a special

coordinate system, where the x-axis is perpendicular to the wall, Ci j
m is diagonal and has only two essential compo-

nents C‖
m and C⊥

m . Thus, it is sufficient to calculate the kinetic energy for two cases, namely when the sphere moves
parallel to and perpendicularly to the wall (see [1]). Let us consider two equal spheres A and B (the centres of the
spheres are denoted by the same symbols) moving symmetrically at velocities with equal absolute values u = u′.
Let the xy-plane be the plane of motion and A the coordinate origin; see Fig. 1.

2.1 Motion perpendicular to the wall

Following the standard procedure, we can write the fluid velocity potential in the form

u⊥ϕ + u′⊥ϕ′, (7)

where functions ϕ and ϕ′ are to be determined by the conditions

�ϕ = 0, �ϕ′ = 0, (8)

and boundary conditions such that ϕ is the value of the velocity potential when sphere A moves with unit velocity
along the spheres centres line while sphere B is at the rest; and similarly for ϕ′.

To find ϕ (if sphere B is absent), we assume that the motion of the fluid will be due to a certain dipole at point
A with its axis co-directed with the sphere velocity vector. If we introduce an image in sphere B of the dipole
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Fig. 2 The consequence of
the dipoles when sphere A
moves in contact with
sphere B, which is at rest.
The dipoles are denoted by
arrows. The length of an
arrow is proportional to the
cubic root of the dipole
strength

existing at point A, the condition of zero normal velocity over the surface of sphere B will be satisfied (see [5]). The
resultant motion due to the dipole and the first image will, however, violate this condition at the surface of sphere A.
In order to neutralize the normal velocity at the surface of sphere A, due to the first image, we must superimpose a
second image, namely the image of the first image in sphere A. This will introduce a normal velocity at the surface
of sphere B, which may again be neutralized by adding another image and so on.

The velocity potential generated by the initial dipole in a point with position vector �r(x, y, z) will be

ϕ1 = −µ1

4π

x

|�r |3 = −µ1

4π

cosϑ

|�r |2 , (9)

where µ1 = 2πa3 is the strength of the dipole, ϑ is the angle between the dipole direction and vector from the
dipole to the point considered. The image of the initial dipole consists of a dipole of opposite sign at the inverse
point A′ determined by

AB · A′ B = a2. (10)

The strength of the image dipole is

µ2 = −µ1
a3

AB3 . (11)

The next images are allocated similarly according to the aforementioned procedure. The coordinates of the
dipoles compose a sequence of inverse points. From coordinate xi and strength µi of the i th dipole, coordinate xi+1

and strength µi+1 of the (i + 1)th dipole can be determined as follows:

xi+1 = xAB − a2

xAB − xi
, (12)

µi+1 = −µi
a3

|xAB − xi |3 , (13)

where xAB = xA = 0 if i is even and xAB = xB otherwise. When the spheres are in contact (xB = 2a), the distance
from the successive i th dipole to the point of contact is inversely proportional to the dipole number; see Fig. 2. The
images continually diminish in intensity, and the series converges very rapidly at high distances and rather slowly
at small distances between the spheres. The same steps are used to calculate the velocity-potential ϕ′, provided that
the coordinates of the moving and immobile spheres are exchanged and the strength of the first dipole changes sign.

The formula for the kinetic energy of the fluid is

2T = −ρ f

∫∫
©

A,B

(u⊥ϕ + u′⊥ϕ′)
(

u⊥
∂ϕ

∂n
+ u′⊥

∂ϕ′

∂n

)
ds = Lu2⊥ + 2Mu⊥u′⊥ + Nu′2⊥, (14)

where integration is effected over both the sphere surfaces and �n is the normal to the surface unit vector. According
to [5], the following formulae are valid for L , M , and N :

L = 1

3
ρ f (µ1 + 3µ3 + 3µ5 + · · · ), (15)

M = ρ f (µ
′
2 + µ′

4 + µ′
6 + · · · ), (16)

N = −1

3
ρ f (µ

′
1 + 3µ′

3 + 3µ′
5 + · · · ). (17)
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Fig. 3 The image in sphere
B of the first dipole in A.
The image consists of the
dipole in inverse point A′
and of the line dipole
distribution approximated
by four dipoles. The dipoles
are denoted by arrows with
lengths proportional to the
cubic root of the dipole
strength

Primes mark values corresponding to the dipoles that generate the potential ϕ′. Thus, in this case, it is sufficient
to employ simple summation. The component of the added-mass-coefficient tensor is determined from the kinetic
energy of a fluid, viz,

2T = 2�ρ f C⊥
m u2⊥. (18)

The factor two in the right-hand side of Eq. 18 arises from the fact that, on the left-hand side, the energy corresponds
to the entire infinite space, and we are interested in the energy of fluid in semi-space.

2.2 Motion parallel to the wall

When the spheres move perpendicularly to the line connecting their centres, potentials ϕ and ϕ′ are defined in a
similar manner as in the previous section. Potential ϕ is approximated as the potential of a series of successive
images starting from the initial dipole. The initial dipole is located at point A with its axis directed perpendicularly
to the line joining the centres of the spheres. The image of the initial dipole consists of a dipole of the same sign
at the inverse point in sphere B and a line dipole distribution of opposite sign with linear density on the segment
connecting point B and the inverse point A′; see Fig. 3 for the case of touching spheres. The dipole strength at the
inverse point is:

µ2 = µ1
a3

AB3 , (19)

The density of the line dipole distribution is

µ̃2(P) = −µ1

a

B P

AB
, (20)

where P is a point of segment A′ B.
For the calculation, the line distribution of the dipoles was approximated by m dipoles. Segment A′ B was split

into m equal sub-segments and, on each sub-segment, a dipole was located at the equilibrium point of the sub-
segment. The strength of the dipole equalled the integral strength of the dipole distribution of the corresponding
sub-segment. The “equilibrium point” means the point with coordinate x j

eq determined by

∫ x j
eq

x j
b

µ̃(x)dx =
∫ x j+1

b

x j
eq

µ̃(x)dx, (21)

where x j
b and x j+1

b are the coordinates of the edges of the j th sub-segment.
The approximation of the dipole distribution by several dipoles allows a determination of the second image as a

sum of the images of each of the dipoles comprising the first image. The third image will be the sum of the images of
all the dipoles comprising the second image and so on. The image of the i th dipole with coordinate xi and strength
µi will be the (i + 1)th dipole in the inverse point, see Eq. 12, with strength

µi+1 = µi
a3

|xAB − xi |3 , (22)
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and m dipoles with strengths

µ
j
i+1 = −µi

a3

|xAB − xi |3
j + 0.5

m2 (23)

and coordinates

x j
i+1 = xAB + a2

m(xi − xAB)

√
j2 + j + 0.5, 0 ≤ j ≤ m − 1, (24)

where xAB = xA = 0 if the i th dipole is in sphere B and xAB = xB otherwise.
The first image consists of m + 1 dipoles; the second image consists of (m + 1)2 dipoles. If we approximate

potential ϕ by n images, we must consider

1 + (m + 1) + (m + 2)2 + · · · + (m + 1)n = (m + 1)n+1 − 1

m
(25)

dipoles and the same number for φ′. According to [10], the kinetic-energy expression formed by an infinite series
corresponding to an infinite sequence of images converges faster when the spheres move perpendicularly to the line
joining their centres, than when they move parallel to this line; thus, fewer images are needed to achieve the same
accuracy. In the next section, parameters m and n, and accuracy will be discussed.

The integral for the kinetic energy over the sphere surface can be taken analytically for each dipole, thus rep-
resenting the kinetic energy as a sum. Due to the symmetry of the problem, the integral over sphere A is equal
to the integral over sphere B. Taking into account the boundary condition on the sphere surface u‖ ∂ϕ

∂n + u′‖
∂ϕ′
∂n =

�u‖�n, and bearing in mind that the flow potential is modelled by a finite set of dipoles ϕi , we can write

2T = −2ρ f u2‖
∫∫
©

A
(ϕ + ϕ′)∂(ϕ + ϕ′)

∂n
ds = −2ρ f u‖

∑
m,n

∫∫
©

A
ϕi �u‖�nds = −2ρ f u‖

∑
m,n

Ii , (26)

where the summation is carried out over all the model dipoles. The integral equals

Ii =
∫ π

0

∫ 2π

0

(
− µi

4π

y

|�r − �ri |3
)

(u‖ sin ϑ cos α)a2 sin ϑdα dϑ

= −µi u‖
4π

∫ π

0

∫ 2π

0

a3sin3ϑcos2α

(a2 − 2xi acosϑ + x2
i )3/2

dαdϑ =

⎧⎪⎨
⎪⎩

µi u‖
3

, |xi | < a

µi u‖
3

a3

x3
i

, |xi | > a
(27)

Here α is an azimuthal angle, xi and µi are the x-coordinate and the strength of the i th dipole, respectively.
Component C‖

m of the added-mass-coefficient tensor can now be calculated from

2T = 2�ρ f C‖
mu2‖. (28)

3 Results

In the axisymmetric case, the added-mass coefficient was calculated numerically using Eqs. 14–18. To achieve a
precision of six significant figures after the decimal point, it was sufficient to construct 1000 symmetric pairs of
dipoles for the contact of the spheres. The added mass C⊥

m at contact is 0.803085, which agrees with previous
results.

The added-mass coefficient C⊥
m was calculated for 200 sphere positions with dimensionless distances of the

sphere centre from the wall h̄ = h
a between 15 and 1 with increasing position density close to the point of con-

tact. The calculated data were fitted using a least-squares method with the following function and with maximum
deviation from the computed data 8 × 10−5:

C⊥
m = 0.5 + H1h̄t1 + H2h̄t2 + H3h̄t3 + H4h̄t4 , (29)
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Fig. 4 Added-mass
coefficient C⊥

m of a sphere
for velocity vector
perpendicular to the wall

where

H1 = 0.19222, t1 = −3.019,

H2 = 0.06214, t2 = −8.331,

H3 = 0.0348, t3 = −24.65,

H4 = 0.0139, t4 = −120.7.

(30)

For the cases when such high accuracy is not required, another, more simple formula can be used, yielding a
deviation of maximum 4 × 10−3:

C⊥
m = 0.5 + H ′

1h̄t ′1 + H ′
2h̄t ′2 , (31)

where

H ′
1 = 0.2182, t ′1 = −3.21,

H ′
2 = 0.081, t ′2 = −19.

(32)

A plot of C⊥
m versus h̄ is presented in Fig. 4. The result can be compared with those of Stokes [4] and Yang [14].

The Stokes result yields

C⊥
m = Cm

(
1 + 3

8

1

h̄3

)
, (33)

and the Yang result yields

C⊥
m = Cm

(
1 + 3W7

(
h̄
))

, (34)

W7 ¯(h) = 1

8h̄3
+ 1

(4h̄2 − 1)3
+ 1

(8h̄3 − 4h̄)3
+ 1

(16h̄4 − 12h̄2 + 1)3
+ 1

(32h̄5 − 32h̄3 + 6h̄)3

+ 1

(64h̄6 − 80h̄4 + 24h̄2 − 1)3
+ 1

(128h̄7 − 192h̄5 + 80h̄3 − 8h̄)3
(35)

As can be seen from Fig. 4, Eq. 33 is quite accurate for h̄ ≥ 2, and Eqs. 34, 35 are quite accurate for h̄ ≥ 1.02.
When a sphere moves parallel to a wall, we used Eqs. 26–28. The resultant accuracy depends on two parameters,

m and n, which were defined in the previous section. To estimate the accuracy, the parameters were increased
steadily and values of the added mass at contact for different combinations m, n was calculated; see Table 1. As the
numbers m, n increased, the accuracy increased. Computational capabilities limit the numbers m and n. Thus, the
following procedure was employed to determine the limit and the accuracy.

The Shanks method was used to estimate the limit of the convergent series [22]. The method allows acceleration
of the convergence of slowly convergent series ai by applying the nonlinear transformation:

bi = ai+1ai−1 − a2
i

ai+1 + ai−1 − 2ai
. (36)

The transformation reduces the number of elements in the series by two. If we have a limited number of series
elements ai , then, after applying a transformation according to Eq. 36 several times, we obtain a limit that is usually
several orders closer to limi→∞ ai than any of the available ai .
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Table 1 Added-mass coefficient C‖
m at the point of contact; sphere moves parallel to the wall

m
n 6 7 8 9 10 11

1 0.6200138508 0.6204787682 0.6207800888 0.6209874361 0.6211368211 0.6212484061

2 0.6199531947 0.6203824700 0.6206538550 0.6208363444 0.6209651049 0.6210595105

3 0.6198900929 0.6202994894 0.6205538209 0.6207218407 0.6208383509 0.6209223638

4 0.6198638366 0.6202645081 0.6205111986 0.6206726096 0.6207834252 0.6208625286

5 0.6198510971 0.6202473440 0.6204901122 0.6206480914 0.6207559168 0.6208324149

6 0.6198440794 0.6202378089 0.6204783294 0.6206343273 0.6207404140 0.6208153866

7 0.6198398375 0.6202320082 0.6204711302 0.6206258895 0.6207308840 0.6208048936

8 0.6198370896 0.6202282319 0.6204664280 0.6206203645 0.6207246310

9 0.6198352127 0.6202256421 0.6204631949 0.6206165584 0.6207203165

10 0.6198338760 0.6202237915 0.6204608799 0.6206138288 0.6207172183

m
n 12 13 14 15 16

1 0.6213342143 0.6214017919 0.6214560797 0.6215004294 0.6215371845

2 0.6211309228 0.6211863538 0.6212303204 0.6212658394 0.6212949887

3 0.6209849222 0.6210327720 0.6210702111 0.6211000784 0.6211243076

4 0.6209208428 0.6209650092 0.6209992382

5 0.6208884543 0.6209306282

6 0.6208700849

Cells are filled where the computational resources allow calculation and where the data is substantial for determining of the limit and
the accuracy.

Table 2 The added mass C‖
m at contact estimated by the Shanks transformations applied on rows and columns of Table 1

7 ≤ n ≤ 13
1 ≤ m ≤ 5

6 ≤ n ≤ 12
2 ≤ m ≤ 6

7 ≤ n ≤ 11
1 ≤ m ≤ 7

6 ≤ n ≤ 10
2 ≤ m ≤ 10

Rows first 0.6210747872 0.6210392848 0.6210036714 0.6209919360

Columns first 0.6210744835 0.6210377470 0.6210037636 0.6210425919

To estimate the limit, we planned to apply the Shanks transformation first to the columns and then to the calcu-
lated row, and vice versa, first to the rows, then to the calculated column. The rectangular data areas from Table 1
were used to apply this transformation, where the transformation could be applied at least twice for each direction.
The limits estimated from the data in different areas are presented in Table 2.

The average and deviation can be calculated from Table 2; thus, at contact C‖
m = 0.62103 ± 0.00005. For the

calculation for other distances between the wall and the sphere, the value corresponding to m = 4, n = 13 was
chosen reasonably, and consequently the error is 0.0001. Close to this value, the error resulting from an increase in
n is close to the error caused by an increase in m; the value is close to that estimated by the Shanks transformations,
and the computation time is not excessive.

The added-mass coefficient C‖
m was calculated with m = 4, n = 13 for 200 sphere positions for distances of

the sphere centre from the wall between 15 and 1 radius, with increasing position density close to the contact. The
points of the function were fitted with a maximum error of 1 × 10−4. Thus, the following formula is valid with a
maximum absolute error of 2 × 10−4:

C‖
m = 0.5 + G1h̄s1 + G2h̄s2 + G3h̄s3, (37)
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Fig. 5 Added-mass
coefficient C‖

m of a sphere
for velocity vector parallel
to the wall

where

G1 = 0.09608, s1 = −3.02,

G2 = 0.0194, s2 = −9.6,

G3 = 0.00546, s3 = −40.2.

(38)

Also we offer another, more simple formula with less accuracy, which yields an absolute error of a maximum of
8 × 10−4:

C‖
m = 0.5 + G ′

1h̄s′
1 + G ′

2h̄s′
2 , (39)

where

G ′
1 = 0.1, s′

1 = −3.1,

G ′
2 = 0.0203, s′

2 = −14.
(40)

The plot of C‖
m versus h̄ is presented in Fig. 5. The result can be compared with that of Stokes [4]:

C‖
m = Cm

(
1 + 3

16

1

h̄3

)
. (41)

As can be seen from Fig. 5, formula (41) is quite accurate for h̄ ≥ 2.
According to [1], if a sphere moves in a direction perpendicular to a plane wall, the equations of motion of the

sphere are:

d

dt
(M‖ ẏ) = Fy,

d

dt
(M⊥ ẋ) − 1

2

(
dM‖
dx

ẏ2 + dM⊥
dx

ẋ2
)

= Fx ,

(42)

where x, y are the sphere-centre coordinates; in this notation x is the distance from the wall and dots above the values
denote the time derivatives; Fx , Fy are the components of extraneous force on the sphere; M⊥ = ms+ρ f �C⊥

m , M‖ =
ms + ρ f �C‖

m , and ms is the sphere mass. It follows from the equations that, if the sphere is constrained to move
in a line parallel to the wall, it is attracted by the wall; if it moves perpendicularly to the wall, its acceleration is
directed away from the wall [1].

4 Conclusions

The problem of a potential flow of an ideal incompressible fluid past a sphere moving in the vicinity of a wall has
been studied. The added-mass coefficient of the sphere can be obtained from the fluid kinetic energy. The fluid
kinetic energy for arbitrary motion of a sphere equals the sum of kinetic energies for motion of the sphere parallel
to and perpendicular to the wall, with velocities equal to the projections of the sphere velocity in the corresponding
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directions. Thus, the problem can be solved as two problems, that is, when the sphere moves perpendicularly to
the wall (axisymmetric case) and when it moves parallel to the wall. It can be expressed in tensor form with two
essential components corresponding to the motion perpendicular to and parallel to the wall. The numerical approach
was chosen for calculating the components, and the added-mass coefficient of the sphere moving in the vicinity of
the wall was determined for both perpendicular and parallel motion of the sphere with respect to the wall.

The successive-image method was used to approximate the fluid motion. In both perpendicular and parallel
cases, the fluid velocity potential was approximated as a sum of the images consisting of dipoles. For axisymmetric
motion, each image consisted of one dipole; the formulae of Hicks [5] were used for the kinetic energy of the fluid.
For a sphere moving parallel to the wall, the number of dipoles in each consecutive image grows as a geometric
series; the integral over the sphere surface in the kinetic-energy expression was calculated for each of the model
dipoles and transformed into a sum over the dipoles.

The obtained dependences of the added-mass tensor components versus the dimensionless distance to the wall
were fitted with simple smooth continuous functions. Thus, simple formulae were obtained for the added-mass-
coefficient tensor components.

The presented formulae for the added-mass components can be used in the problem of modelling and analysis
of the motion of a sphere in a fluid near a solid wall, which can be encountered, e.g., in fluid mechanics, especially
in civil and mechanical engineering.

The studied subject, i.e., added mass of a body moving in fluid near a solid surface, can be developed further
by applying the used technique for calculating the energy of fluid moving past two arbitrarily moving spheres. In
the case of unequal sphere radii, the coefficients in the energy expression will also depend on the ratio of the radii.
If the method would turn out to be practical, even in the case of more than two bodies, the research area could be
greatly extended.

Acknowledgements Support under project No. 103/06/1487 of the Grant Agency of the Czech Republic and under Institutional
Research Plan No. AV0Z20600510 of the Academy of Sciences of the Czech Republic is gratefully acknowledged.

References

1. Lamb H (1951) Hydrodynamics, 6th edn. Cambridge University Press, Cambridge
2. Nino Y, Garcia M (1994) Gravel saltation. 2. Modelling. Water Resour Res 30(6):1915–1924
3. Tsuji Y, Morikawa Y, Mizuno O (1985) Experimental measurements of the Magnus force on a rotating sphere at low Reynolds

numbers. J Fluid Eng 107:484–488
4. Stokes GG (1843) On some cases of fluid motion. Trans Cambridge Philos Soc 8:105–137
5. Hicks WM (1880) On the motion of two spheres in a fluid. Philos Trans 13:455–492
6. Basset AB (1887) On the motion of two spheres in a liquid, and allied problems. Proc Math Soc 18:369–377
7. Kawaguti M (1964) The flow of a perfect fluid around two moving bodies. J Phys Soc Japan 19:1409–1415
8. Shebalov AN (1967) Unsteady motion of a body under a solid wall or free surface. Mekhanika Zhidkosti i Gaza 2:109–115
9. Kochin NE (1949) O volnovom soprotivlenii i podjemnoj sile pogruzhennyh v zhidkost tel (Wave resistance and lift force of

bodies immersed in a liquid). Collected works of N.E. Kochin 2:105–182
10. Voinov OV (1969) O dvizhenii dvukch sfer v idealnoj zhidkosti (On motion of two spheres in ideal liquid). Prikl Mat Mekh

33:659–667
11. Weihs D, Small RD (1975) An exact solution of the motion of two adjacent spheres in axisymmetric potential flow. Israel J Technol

13:1–6
12. Miloh T (1977) Hydrodynamics of deformable contiguous spherical shapes in incompressible inviscid fluid. J Eng Math 11:349–

372
13. Bentwich M, Miloh T (1978) On the exact solution for the two-sphere problem in axisymmetrical potential flow. J Appl Mech

45:463–468
14. Yang F-L (2006) Interaction law for a collision between two solid particles in a viscous liquid. PhD thesis, California Institute of

Technology. Caltech Library Services. http://etd.caltech.edu/. Cited 26 May 2006
15. Majumder SR (1961) The motion of two spheres in contact parallel to the common line of centres in an incompressible, homoge-

neous non-viscous fluid. Buletinul Institutului Politehnic din Iasi 7:51–56
16. Small RD, Weihs D (1975) Axisymmetric potential flow over two spheres in contact. J Appl Mech 42:763–765
17. Morrison FA Jr (1976) Irrotational flow about two touching spheres. J Appl Mech 43:365–366

123



172 A. A. Kharlamov et al.

18. Davis AMJ (1977) High frequency limiting virtual-mass coefficients of heaving half-immersed spheres. J Fluid Mech 80:305–319
19. Jeffrey DJ, Chen H-S (1977) The virtual mass of a sphere moving toward a plane wall. J Appl Mech 44:166–167
20. Cox SJ, Cooker MJ (2000) Potential flow past a sphere touching a tangent plane. J Eng Math 38:355–370
21. Odar F, Hamilton WS (1964) Forces on a sphere accelerating in a viscous fluid. J Fluid Mech 18:302–314
22. Shanks D (1955) Nonlinear transformations of divergent and slowly convergent sequences. J Math Phys 34:1–42

123


	Abstract
	Abstract
	1 Introduction
	2 Mathematical model
	2.1 Motion perpendicular to the wall
	2.2 Motion parallel to the wall

	3 Results
	4 Conclusions
	Acknowledgements
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


